Acute Leukemia: new agents

Jordi Esteve
Hospital Clínic, Barcelona

36a Diada Internacional
Therapeutic advances in Hematology
Societat Catalana d’Hematologia
Outcome of AML in adult patients: a real need for new agents

- Curation of only a fraction of patients (<50%) – insufficient antileukemic potential
- Remission is based on highly myelotoxic agents – toxicity
- Limited target population of hematopoietic stem-cell transplant
- “High-risk” presentation forms – need of a different/“more gentle APL-like approach”
Outcome for patients with AML: any improvement for the last two decades?

Acute Myeloid Leukemia (AML): temptative definition

- Genetically heterogeneous clonal disorder
- Origin in hematopoietic progenitor cells
- Due to accumulation of somatic acquired genetic & epigenetic alterations
- Altered mechanisms of self-renewal, proliferation & differentiation
- Resulting in an impaired *leukemic* hematopoietic hierarchy: the leukemia stem-cell model
Novel therapeutic strategies introduced in AML in recent years

• Intensified anthracyclines in induction therapy
• Addition of GO to CT (gemtuzumab ozogamycin, antiCD33+calicheamicin)
• Targeted therapy: TKIs (FLT3 inhibitors,...)
• Demethylating agents in AML
• Histone deacetylase inhibitors
• Priming with G-CSF: chemosensitizing or blocking stromal protection (CXCR4 antagonists)
• ...
High-dose daunorubicin in AML: benefit for good & intermediate-risk cytogenetics

Fernández HF (ECOG), NEJM 2009
MoAbs in AML: Humanized antiCD33 Ab Gemtuzumab + calicheamicin (Mylotarg)

1-2. Binding to CD33 Ag
3-4. Internalization & calicheamicin activation
8. Antitumoral effect: induction of DNA breaks
7. Mechanisms of resistance: drug efflux
5. Rapid CD33 re-expression
Mylotarg in relapsed AML: the old concept

✓ Significant activity but transient duration of response - monotherapy (9 mg/m² x 2 doses) for relapsed AML
 • 26% CR
 • Median response duration: 7 mos

✓ Significant hepatotoxicity (SOS)

✓ Uncertain synergy with chemotherapy

✓ Role in APL: chemo-free front-line, molecular relapses

Sievers E, JCO 2001
Larson R, Cancer 2005
Estey E, Blood 2002
Lo Coco F, Blood 2004
Mylotarg revisited: from early withdrawal to resurrection – a dose issue?

✓ Addition of a 6 mg/m² at day +4 of DA induction – excess of induction death in the GO arm (5.4 vs. <2%) - (SWOG S0106)

✓ Addition of low-dose GO (3 mg/m²) to induction & course 3: survival benefit in pts with favorable cytogenetics - MRC AML15 Trial

✓ Addition of multiple doses of GO (3 mg/m²) to standard AML chemotherapy: days 1, 4 & 7 during induction, day 1 of consolidation (x 2 courses) – ALFA-0701

Petersdorf S, ASH 2009
Burnett A, JCO 2011
Castaigne S, Lancet 2012
Mylotarg revisited (II): from early withdrawal to resurrection – a dose issue?

✓ Improved EFS, but not OS, in IR-AML pts receiving GO at a dose of 6 mg/m² at induction & consolidation who did not undergo alloHSCT– (GOELAMS AML 2006 IR Study)

✓ Toxicity related to GO:
 - Delayed plated recovery
 - Increased hepatic toxicity (6 mg/m²)

Delaunay J, ASH 2011
Castaigne S, Lancet 2012
Mylotarg revisited: benefit in frontline therapy

EFS

OS

Relapse-free survival

2-yr RFS: 50 (+GO) vs. 22.7%

De novo AML
50-70 year-old
280 randomized pts.

Castaigne S, Lancet 2012
Good-risk patients benefit from the addition of Mylotarg: MRC AML15 Trial

Burnett A, JCO 2011
FLT3 (fms-like TK) Internal Tandem Duplication (ITD)

Downstream FLT3 signaling

Alteration of transcription and translation: Regulators of cell cycle, apoptosis, differentiation

PROLIFERATION

SURVIVAL

DEGRADATION

BAD

AKT

PTEN

PI3-KINASE

MEKK

ERK

STATS

PM

Internal duplications

Point mutations

Insertions

Deletions
FLT3 inhibitors: diverse specificity against multiple targets
FLT3 inhibitors: currently existing experience

- Limited activity in **monotherapy** (sorafenib, midostaurin,…)
- Possible synergy in **combination with chemotherapy**
 - Lestaurtinib: no benefit in relapsed AML
 - Midostaurin/PKC-412: on-going trial (front-line tx)
- Role in the alloHSCT setting: anecdotal reports of responding patients
- AC220 (quizartinib): remarkable activity in monotherapy
 - Composite response rate (CR+CRp+CRi) of ≈45%
 - Differentiating potential in AML blasts

Fischer T, JCO 2010
Levis M, Blood 2011
Cortes J, Haematologica 2011
Lestaurntinib added to CT failed to improved outcome in relapsed AML

Control arm: CT (MEC or HiDAC)
Experimental arm: CT + lestaurntinib

Levis M et al. Blood 2011
Midostaurin (PKC412): experience combined to CT

- Sequential (day 8→21) or simultaneous (1→21) administration with CT (daunorubicin/SD ara-C)
- Reduced dose (50 mg BID) was better tolerated
- Results in 40 pts:
 - CR in 12/13 (92%) FLT3mut AML
 - CR in 20/26 (77%) FLT3wt
- Sequential regimen were better tolerated

Stone R, Blood 2005
RATIFY trial: exploring the effect of adding midostaurin (PKC412) to frontline CT in FLT3-ITD AML
AC220 as a bridge strategy to alloHSCT in a patient with a primary chemorefractory FLT3-ITD(+) patient

Nov-2010
50-yr male
WBC 81x10^9/L
AML w/o maturation +8, FLT3-ITD(+)

May-2011
- Pancreatitis
- BM fibrosis & 57% blast
- High FLT3-ITD/wt ratio
- 2 available HLA-id sibl

IDA-FLAGx2-Ref

August-2011
AlloHSCT
MAC (Cy/TBI)
HLA-id sibl

AC220 x 2

May-2012
+9 mos post-allo
cGvHD after CsA removal
CCR+
100% chimerism

Response to AC220?
Pancytopenia
Hypocellular BM
Absence of blasts – blast-free status
Persistent fibrosis
FLT3 inhibitors: an adequate target?

✓ FLT3-ITD: a frequent mutation (≈20%) & frequent FLT3 overexpression in unmutated FLT3 AML cases

✓ Driver or passenger mutation?

Passenger mutation
- Evolutive mutation
- Insufficient to induce AML in preclinical models
- Not present in all paired relapsed samples
- Highly variable allelic burden

Driver mutation
- Identification of TK domain mutations conferring resistance in relapsed patients
FLT3 mutations arising in relapsed pts under quizartinib involve critical residues for drug-target interaction – a mechanism of selected pressure

Mutations in 8/8 relapsed pts
Critical residues
“Polyclonal” resistance
Cross-resistance with sorafenib

FLT3-ITD as a driver mutation
FLT3-ITD involves LICs?
Confers oncogene addiction

Smith CC, Nature 2012
AML is a disease with deregulated epigenetic program: role for epigenetic therapy

DNA methylation (CpG islands) – demethylating agents
Histone deacetylation – HDAC inhibitors
Histone methylation
miRNA gene methylation
Epigenetic signatures in AML

Figueroa ME, Cancer Cell 2010
DNMT3A gene

• Encodes a 912 aa protein with DNA methyltransferase activity: catalyses CH3 addition to cytosine in CpG islands, leading to promoter silencing

• Multiple diverse DNMT3A gene mutations are found in AML

59.8% of the mutations are in R882
Demethylating agents in AML – possible development

• Monotherapy in pts unfit for intensive CT – benefit in “low-count” (20 – 30%) blast AML

• Role in higher blast %?

• Maintenance after CT-induced response – looking for a post-remission strategy in high-risk disease

• Combination with HDAC inhibitors – the García-Manero’s way

• In combination with frontline chemotherapy - Synergistic potential? Best time sequence? AMLSG 12-09 trial

• Aza after transplant – pre-emptive/therapy for relapse
Azacitidine Prolongs Survival (vs. Conventional Care Regimens) in Elderly Patients With Low Bone Marrow Blast Count AML

Fenaux P et al. JCO 2010
Demethylating agents in AML – possible development

- Benefit (prolonged response) for a subgroup of pts – tools for identifying predictors
- No eradicative potential – need to associate to other strategies
- Reasons for non-eradicative nature - evasion of LSCs?
- True mechanism of action of demethylating agents: more than CpG demethylation
- Optimal dose – regimen are still unknown
Survival according to age: Swedish Acute Leukemia Registry (1997-2005)

Overall survival according to age irrespective of management (top, n = 2767)

Increasing incidence of AML with age: a work of years

Acute myeloid leukemia (AML)

Males

Females

Rate per 1 000 000 person-years

Non-Hispanic whites
Blacks
Hispanic whites
Asians/Pacific Islanders

New agents for elderly AML patients – urgent progress needed!

- Absence of benefit with intensive CT – selected pts with highly chemosensitive AML

- How to be more efficient in the search of new agents? The “pick-a-winner” MRC approach
 - Multitesting several with “control arm”
 - Interim assessment to avoid useless recruitment
 - Response rate is a valid surrogate?
Constant search of new agents for AML

<table>
<thead>
<tr>
<th>Evaluated</th>
<th>Under evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDR inhibitors</td>
<td>Newer nucleoside analogs (clofarabine, troxacytabine, elacytarabine,...)</td>
</tr>
<tr>
<td>Farnesyl-transferase inhibitors (tipifarnib,...)</td>
<td>FLT3 inhibitors</td>
</tr>
<tr>
<td>Lestaurntinib (FLT3 inh)</td>
<td>Demethylating agents</td>
</tr>
<tr>
<td>Laromustine (cloretazine)</td>
<td>Histone modifiers (HDACs)</td>
</tr>
<tr>
<td>Amonafide</td>
<td>Aminopeptidase inhibitors</td>
</tr>
<tr>
<td>Arsenic Trioxide</td>
<td>Hedgehog inhibitors</td>
</tr>
<tr>
<td>ATRA+CT in non-APL</td>
<td>NEDD8-Activating Enzyme (NAE) inhibitors</td>
</tr>
</tbody>
</table>

...
Clofarabine + LDAC: Outcome (N=70)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Clo N=16</th>
<th>Clo+ara-C N=54</th>
<th>Total N=70</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR + CRp</td>
<td>31%</td>
<td>67% (63%)</td>
<td>59% (56%)</td>
</tr>
<tr>
<td>Resistance</td>
<td>38%</td>
<td>20%</td>
<td>23%</td>
</tr>
<tr>
<td>Induction deaths</td>
<td>31%</td>
<td>19%</td>
<td>21%</td>
</tr>
</tbody>
</table>

*p ≤ .05

Faderl S. Blood 2008;112:1638
Analyzing causes of failure - challenges for developing a curative therapy in AML

- Biological heterogeneity – not a unique target
- Multi-step process – lessons from whole-genome sequencing
- Quiescence of leukemia-stem cells confers chemoresistance – need to target LSCs
- AML: a family of different subclones – preleukemic & evolutive clones
- BM microenvironment – a protective *milieu*
Lessons from complete sequencing of AML

- Concurrence of multiple mutations per patient (>8):
 - A set of recurrent mutated genes (>50)
 - Most commonly mutated genes: *FLT3* (36%), *NPM1* (25%), *DNMT3A* (21%), *IDH1* (18%), *IDH2* (10%), *TET2* (10%), *ASXL1* (6%), *NRAS* (6%), *TTN* (6%) & *WT1* (6%)
 - Mutation in genes previously unknown
 - New leukemic pathways unraveled: the cohesin complex (*STAG2, SMC1A/3, RAD21*)
 - Subtype-specific mutations & other *transversal* mutations

John Welch/T Ley (University of Washington), ASH 2011
Origin of relapse in AML: evolution from founding clone / subclone / ancestral clone?
Why are LSCs important?

Conventional therapy

Anti-LSC therapy

Cortesía de Ruth M. Risueño
Potential mechanisms for targeting Leukemia Stem Cells

• Targeting fusion proteins
 - High diversity in AML

• Signaling pathways (JAK/STAT, Wnt, Hedghog,…)
 - Diversity
 - Redundancy-overlapping

• Self-renewal mechanisms
 - Similarity HSCs - LSCs

• Inducing differentiation – the ATRA model

• MoAbs against specific LSC Ags
AML biology: putative involved pathways
Selective targeting of Leukemia-Stem Cells: still an utopy?

Kikushige Y, Cell Stem Cell 2010
Self-renewal/Differentiation balance in HSCs/LSCs: promoting differentiation induces LSC apoptosis

Sachlos E, Risueño RM, Cell 2012
Chemical screening of compounds leading to loss of pluripotency (LOP)

Selection of selective compounds against LSCs

Differentiation / Self-renewal

Oct4 & Sox2 expression

Sachlos E, Risueño RM, Cell 2012
AML & hematopoietic niche: protection, disruption

Lane SW et al, Blood 2009
Mobilization of AML blasts after CXCR4 antagonist plerixafor: a true chemosensitization method?

Adult ALL – state-of the art

- Despite high initial response, less than 50% of pts are cured – insufficient antileukemic potential of current agents
- Dense-intense regimens used in adult B-ALL cause significant toxicity
- AlloHSCT arises as the only curative option for very high-risk subsets
- Need to identify future relapsers:
 - Sensitive assessment of MRD (the era of MRD-based protocols)
 - High-risk molecular markers (del IKAROS, MLL-r,...)
Blinatumomab: bispecific (CD19-CD3) recombinant antibody
Blinatumomab for eradication of MRD in B-ALL: experience in a Phase-II trial

- Adult B-ALL in morphological CR with detectable MRD at molecular level (≥1 x 10^{-4}) after induction/consolidation – molecularly refractory or molecular relapse
- Blinatumomab at 15µg/m^2 as continuous infusion x 4 weeks (1 – 4 cycles). AlloHSCT was proposed in responders
- 20 pts evaluable:
 - Obtention of molCR in 16 (80%) after 1st cycle
 - Active in molecularly refractory and high burden MRD

Topp MS (GMALL), JCO 2011
Sustained response after Blinatumomab in MRD(+) B-ALL

4/16 relapses
0/8 in pts undergoing alloHSCT

No Hematologic Relapse (probability)

Duration of Disease-Free Survival (days)

Topp MS (GMALL), JCO 2011
Blinatumomab: *unexpected* adverse events

- High frequency of serious CNS events (ataxia-apraxia, aphasia, seizures, cognitive disturbance,…) with first doses
- Cytokine release syndrome (CRS) with DIC in pts with high-burden disease
- Lowering initial dose & pre-phase with dexamethasone ±cyclophosphamide to prevent CRS
Blinatumomab: considerations & future development

- Role in overt-morphological refractory/relapsed B-ALL
- Role in other B-cell malignancies
- Mechanisms of disease *escape*:
 - Body sanctuaries (CNS, testis)
 - Loss of CD19 expression
- Future development of new targets for bispecific moAbs:
 - Anti CD33-CD3 (AML)
Role of NOTCH mutations in T-ALL pathogenesis: an opportunity for targeted therapy

Ligand-activated transcription factor

NOTCH activation requires 2 proteolytic steps

- Anabolic glycolysis
- Cell growth (PI3K-AKT-mTOR)

Ferrando A, ASH 2009
Aberrant NOTCH1 signaling in T-ALL

• Constitutive activation of NOTCH1 is found in \(\approx 60\% \) of T-ALL

• Gamma-secretase (GS) cleavage is essential for NOTCH1 activation:
 – GS inhibitors (GSIs) are a potential targeted therapy (GSI PF-03084014, MK-0752)
Benefits of combined GSIs + dexamethasone:
↓ less GI toxicity, ↑ anti-leukemic effect

Real PJ et al., Nature Medicine 2009
New agents for acute leukemia – remarks (I)

- Progress in AML/ALL biology knowledge is essential for developing new therapies
- Heterogeneity of disease – analysis of benefit in specific populations
- Multistep disease – need of combining agents against diverse targets
- Targeting LSCs: hope for cure
New agents for AL – remarks (II)

- Interfering with microenvironment protection might increase antileukemic efficacy
- Need to develop more rapid strategies for identifying active compounds
- Relevant role of clinical trials to improve outcome: company vs. non-benefit groups sponsored trials
CETLAM Group
Salut Brunet
Jordi Sierra
Josep Nomdedéu
Josep Ma. Ribera
Mar Tormo
David Gallardo
Rafa Duarte
CETLAM centers

Hematology Department
Marta Pratcorona IDIBAPS
Marina Díaz Beyá (HCB)
Ruth M. Risueño (IRJC)
Grup de recerca mieloide, IDIBAPS, IR Josep Carreras

FUNDACIÓ CLÍNIC BARCELONA

Hematopathology Unit

University of Barcelona
Alfons Navarro
Marià Monzó

Acute Leukemia Working Party - EBMT