Model animal de pneumònia associada al ventilador: descripció del model i utilitat

Gianluigi Li Bassi, MD
Presenter Disclosure Information

Gianluigi Li Bassi, MD

Compensated service for a relevant commercial entity

1. Covidien Honoraria for lectures

Presenter will deliver content that is evidence-based and conforms to the generally accepted formats of scientific data presentations. Any and all clinical recommendations made relating to patient care will be based on the best available scientific evidence and not biased by any commercial entity’s interest.

Presenter will use scientific or generic names in referring to products in their lectures or enduring materials. For any product that will be mention, both the benefits and limitations of that product will be discussed and those of the products in that class of drugs. Presenters will not stress one product over another without scientific evidence for recommendations.
SUMMARY

- Ventilator-Associated Pneumonia
- Model of severe *P. aeruginosa* pneumonia
- Effects of Glucocorticoids in severe *PA* pneumonia
- Model of severe MRSA pneumonia
- Model of ventilator-associated pneumonia and future studies
VENTILATOR ASSOCIATED PNEUMONIA

HAP
- Pneumonia occurring ≥ 48 hours after hospital admission
- Risk factors for MDR bacteria causing HAP
 - Antibiotic therapy within 90 days of infection
 - Current hospitalization of ≥ 5 days
 - High frequency of antibiotic resistance in community or specific hospital unit
 - Immunosuppressive disease or therapy
 - Presence of HCAP risk factors for MDR

VAP
- Pneumonia occurring > 48 hours after endotracheal intubation
- Risk factors for MDR bacteria causing VAP
 - Presence of HCAP or HAP risk factors for MDR

HCAP
- Pneumonia occurring ≤ 48 hours of hospital admission in patients with ≥ 1 of the following risk factors for MDR bacteria as cause of infection:
 - Hospitalization for ≥ 2 days in an acute-care facility within 90 days of infection
 - Residence in a nursing home or long-term care facility
 - Antibiotic therapy, chemotherapy, or wound care within 30 days of current infection
 - Hemodialysis treatment at a hospital or clinic
 - Home infusion therapy or home wound care
 - Family member with infection due to MDR bacteria
ICU Infections 2006-2007 (NHSN)

<table>
<thead>
<tr>
<th>Type of ICU</th>
<th>Type of Infection</th>
<th>Mean Infection Incidence Density*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical</td>
<td>Ventilator-associated pneumonia</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Catheter-associated UTI</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>Catheter-associated BSI</td>
<td>2.4</td>
</tr>
<tr>
<td>Surgical</td>
<td>Ventilator-associated pneumonia</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>Catheter-associated UTI</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>Catheter-associated BSI</td>
<td>2.3</td>
</tr>
</tbody>
</table>

*Number of infections/device days x 1000

Am J Infect Control 2008 36:609-26
Mortality and Costs of VAP

<table>
<thead>
<tr>
<th>Variable</th>
<th>No VAP (n=692)</th>
<th>VAP (n=127)</th>
<th>p value \leq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepsis n(%)</td>
<td>75 (11)</td>
<td>43 (44)</td>
<td><.001</td>
</tr>
<tr>
<td>ICU LOS</td>
<td>4 days</td>
<td>26 days</td>
<td><.001</td>
</tr>
<tr>
<td>Hospital LOS</td>
<td>13 days</td>
<td>38 days</td>
<td><.001</td>
</tr>
<tr>
<td>Death n (%)</td>
<td>237 (34)</td>
<td>64 (50)</td>
<td><.001</td>
</tr>
<tr>
<td>Total cost</td>
<td>$21,620</td>
<td>$70,568</td>
<td><.001</td>
</tr>
</tbody>
</table>

Warren et al *Crit Care Med* 2003 31:1312-17
VAP: ETIOLOGY

- Pseudomonas aeruginosa: 24.7%
- Staphylococcus aureus: 20.4%
- Enterobacteriaceae: 14.1%
- Haemophilus spp.: 9.8%
- Streptococcus pneumoniae: 9.5%
- Acinetobacter spp.: 7.9%
- Streptococcus spp.: 6.4%
- Neisseria spp.: 2.6%
- S. maltophilia: 1.7%
- Fungi: 1.9%
- Anaerobes: 1.9%
- Others: 3.8%

Chastre et al AJRCCM 2002 Apr 1;165(7):867-903
ANIMAL MODELS OF VAP

• Animal models are an essential step between in vitro testing and clinical studies, and are necessary for the understanding of pathophysiology, pharmacology and efficacy of therapy.

• An animal model provides a unique opportunity to study some of the incompletely understood mechanisms involved in VAP, such as the role of inflammation, the dynamics of bacterial colonization and/or infection, and the response to antimicrobial therapy.
Paris, FRANCE
Chief: Jean Chastre

Tarragona, SPAIN
Joan XXIII University Hospital
Chief: Jordi Rello

Barcelona, SPAIN
IDIBAPS
Chief: Antoni Torres Marti

St. Louis, MO
University of Washington
Chief: Marin H. Kollef

Mineola, NY
STAY HWTHROP UNIVERSITY HOSPITAL
Chief: Michael S. Niederman

Maastricht, THE NETHERLANDS
University Hospital Maastricht
Chief: Marc J. M. Bonten
Division of Animal Experimentation

Chief: Antoni Torres, MD
Coordinator: Gianluigi Li Bassi, MD
MDs: Lina Maria Saucedo, MD
Mariano Esperatti, MD
Nestor Luque, MD
Veterinarian: Montserrat Rigol, DVM
PhD: Laia Fernandez
Physiotherapist: Dani Marti, RRP
Research Nurses: Isabel Martin Lopez, RRN
Alicia SanJose, RRN
SUMMARY

- Ventilator-Associated Pneumonia
- Model of severe *P. aeruginosa* pneumonia
- Effects of Glucocorticoids in severe *PA* pneumonia
- Model of severe MRSA pneumonia
- Model of ventilator-associated pneumonia and future studies
Experimental *Pseudomonas aeruginosa* pneumonia: evaluation of the associated inflammatory response

O. Sibila*, C. Agustí*, A. Torres*, S. Baquero*, S. Gando*, J.R. Patrón†, J.G. Morato†, D.H. Guifredo‡, N. Bassi§ and C.M. Luna§

Eur Respir J 2007; 30: 1167–1172
METHODS

• Animal model of severe pneumonia in piglets, mechanically ventilated up to 96 hours, through bronchial inoculation of a 75 ml solution of *Pseudomonas aeruginosa* (10^6 cfu/ml)

The following variables were assessed:

• Clinical, hemodynamic and biochemical data every 12 hours.
• Inflammatory response (IL-6, IL-1beta, IL-8, TNF-alfa and PCR) in serum and BAL every 24 hours.
• Microbiological studies (cultures from blood, BAL and lung tissue).
• Histopathology studies.
Large White-Landrace pig (30 kg) Following surgical preparation, bronchoscopic inoculation of *P. aeruginosa*

Ventilated pig (96 hours) Macroscopic pneumonia
RESULTS

Clinical Data

PaO2/FiO2

Temperature

Mean Arterial Pressure

Heart Rate
RESULTS

Inflammatory Response (Serum)

serum IL-1 beta

- Time (hours): 0, 2, 4, 8, 72, 96
- pg/dl: 0, 25, 50, 75
- p-value: 0.97

serum IL-6

- Time (hours): 0, 2, 4, 8, 72, 96
- pg/dl: 0, 10, 20, 30, 40, 50
- p-value: 0.04

serum IL-8

- Time (hours): 0, 2, 4, 8, 72, 96
- pg/dl: 0, 25, 50, 75
- p-value: 0.67

serum TNF-alfa

- Time (hours): 0, 2, 4, 8, 72, 96
- pg/dl: 0, 25, 50, 75, 100, 125, 150
- p-value: 0.30
RESULTS

Inflammatory Response (BAL)

BAL IL-1 beta
- Time (hours): 0, 6, 96
- pg/ml: 0, 200, 400, 600, 800, 1000
- p = 0.06

BAL IL-6
- Time (hours): 0, 6, 96
- pg/ml: 0, 50, 100, 150, 200
- p = 0.04

BAL IL-8
- Time (hours): 0, 6, 96
- pg/ml: 0, 50, 100, 150, 200
- p = 0.14

BAL TNF-α
- Time (hours): 0, 6, 96
- pg/ml: 0, 50, 100, 150
- p = 0.46
RESULTS

Histology Studies

P. Aeruginosa concentration
Lung Tissue

Histological severity

Pneumonia Confluent P Abscessed P

<10^4 cfu/ml 10^4 cfu/gr 10^5 cfu/gr
SUMMARY

- Ventilator-Associated Pneumonia
- Model of severe *P. aeruginosa* pneumonia
- Effects of Glucocorticoids in severe *PA* pneumonia
- Model of severe MRSA pneumonia
- Model of ventilator-associated pneumonia and future studies
Effects of glucocorticoids in ventilated piglets with severe pneumonia

O. Sibila*,†, C.M. Luna†, C. Agustí*,‡, S. Baquero†, S. Gando†, J.R. Patrón†, J.G. Morato†, R. Absi‡, N. Bassi† and A. Torres*,‡

Eur Respir J 2008; 32: 1037–1046
STUDY DESIGN

Data Collection

Randomization:
- Control group (n=5)
- Ciprofloxacin group (n=5) (ciprofloxacin, 200 mg, every 12 h)
- Ciprofloxacin + Glucocorticoids group (n=5)
 (Ciprofloxacin, 200 mg every 12 h plus GCs, i.v. methylprednisolone 0.5 mg/kg-1 every 12 h)

- Animal preparation
- Bronchoscopic inoculation of pathogens
- Baseline data

Autopsy
RESULTS

Clinical Data (12h-96h)

Changes in PaO$_2$/FiO$_2$

![Graph showing changes in PaO$_2$/FiO$_2$ with p=0.30](image)

Changes in temperature

![Graph showing changes in temperature with p=0.76](image)

Changes in Cst

![Graph showing changes in Cst with p=0.01](image)
RESULTS

Inflammatory Response (BAL)

CRP BAL

IL-6 BAL

IL-1 BAL

IL-8 BAL

TNF-alfa BAL

CRP BAL

IL-6 BAL

IL-1 BAL

IL-8 BAL

TNF-alfa BAL

Control
CIP
CIP+GC

p=0.41

p=0.03

p=0.40

p=0.19

p=0.30
RESULTS

Histology Studies

LUNG TISSUE

control CIP CIP+GC

Log cfu/gr

control CIP CIP+GC

p=0.01
SUMMARY

- Ventilator-Associated Pneumonia
- Model of severe *P. aeruginosa* pneumonia
- Effects of Glucocorticoids in severe *PA* pneumonia
- Model of severe MRSA pneumonia
- Model of ventilator-associated pneumonia and future studies
Animal model of severe pneumonia in piglets mechanically ventilated up to 24 hours through bronchial inoculation of a solution containing 75 ml of MRSA (106 ufc/ml)

The following variables were assessed:

1.- Clinical, hemodynamic and biochemical data.
2.- Inflammatory response (CRP, IL-1 beta, IL-6, IL-8 and TNF-alfa) in serum and BAL
3.- Microbiological studies (cultures from blood, BAL and lung tissue)
4.- Histopathology studies.
RESULTS

Inflammatory Response (Serum)

- **serum IL-6**
 - 0 hours: 0 pg/ml
 - 24 hours: 60 pg/ml

- **serum PCR**
 - 0 hours: 10 pg/ml
 - 24 hours: 6 pg/ml

- **serum IL-1 beta**
 - 0 hours: 40 pg/ml
 - 24 hours: 80 pg/ml

- **serum IL-8**
 - 0 hours: 20 pg/ml
 - 24 hours: 40 pg/ml

* p< 0.05
RESULTS

Inflammatory Response (BAL)

* p < 0.05
ONGOING STUDIES

Laboratory study to assess effects of Vancomycin and Linezolid in a pig model of VAP due to MRSA

Data Collection

- Animal preparation
- Bronchoscopic inoculation of MRSA
- Baseline data

Randomization:
- Control group (n=10)
- Vancomycin Continuous Infusion (n=10) (In order to reach trough levels 15-20 µg/ml)
- Vancomycin Bolus (n=10) (10 mg/kg/12h, which corresponds to 15-20 mg/kg in humans)
- Linezolid (n=10) (600 mg/12h)

Autopsy
SUMMARY

• Ventilator-Associated Pneumonia

• Model of severe *P. aeruginosa* pneumonia

• Effects of Glucocorticoids in severe *PA* pneumonia

• Model of severe MRSA pneumonia

• Model of ventilator-associated pneumonia and future studies
Pathogenesis of VAP

- It is universally believed that the most common sequence leading to VAP is through the aspiration of colonized oropharyngeal secretions.
STUDY DESIGN

Oropharyngeal bacterial challenge

0 4 8 24 48 72

• Animal Preparation
• Baseline Data Collection
BACTERIAL CHALLENGE

After 4 and 8 hours of mechanical ventilation oropharyngeal instillation of 5 mL of 10^7 cfu/mL culture of genetically modified green fluorescent *P. aeruginosa* Ceftriaxone resistant
PIG POSITION
AUTOPSY and MICROBIOLOGY STUDIES

Bacterial Count

Cfu/g

Trachea Carina RUL RML RLL LUL LLL

Sample site
HYSTOPATHOLOGY

Right Medium Lobe
HYSTOPATHOLOGY

Right Upper Lobe
Conclusions

• Animal models are an essential step between in vitro testing and clinical studies, and are necessary for the understanding of pathophysiology, pharmacology and efficacy of therapy.

• We developed several animal models to provide a unique opportunity to study some of the incompletely understood mechanisms involved in HAP, such as the role of inflammation, the dynamics of bacterial colonization and/or infection, and the response to antimicrobial therapy.

• In current studies we have developed the first accurate model of VAP to fully understand its pathogenesis and devise new strategies to reduce associated morbidity and mortality.
Chief: Antoni Torres, MD
Coordinator: Gianluigi Li Bassi, MD
MDs: Lina Maria Saucedo, MD
Mariano Esperatti, MD
Nestor Luque, MD
Veterinarian: Montserrat Rigol, DVM
PhD: Laia Fernandez
Physiotherapist: Dani Marti, RRP
Research Nurses: Isabel Martin Lopez, RRN
Alicia SanJose, RRN

Thank You
www.idibapsrespiratoryresearch.org