Characterization of a new antiasthmatic therapeutic target: synergy between EP$_2$ agonism and anti-IgE through a biosimilar candidate with omalizumab

Adrián Urbano

Director: Fernando de Mora

Dept. of Pharmacology, Therapeutics and Toxicology
Common chronic inflammatory disease in the airways
 - The most frequent in childhood and adolescence
 - Characterized by:
 - Spasmodic contraction of bronquial muscles
 - Triggered by several factors
 - Shortness of breath (Airflow obstruction)
 - Decreased caliber of the bronchi
 » Airway hyperresponsiveness (AHR)
 » Mucus hyperproduction
 » Airway wall remodeling

Asthma is a global health problem affecting around de 10% of the global population
 - Allergic asthma (80%):
 - Immunologically responses to nonspecific stimuli
There is no effective curative or preventive treatment

- Inhaled corticosteroids (ICS)
- Long acting β_2-agonist (LABA)
- Glucocorticoides (GC)

Identification of a new anti-asthmatic target:

- EP_2 receptor

INTRODUCTION

Need for new anti-asthmatic targets

Treatment & Therapeutic target candidate

- Protector effect on asthmatic response

PGE_2-EP_2-MC
Need for new anti-asthmatic targets

Omalizumab

- **Omalizumab** (Xolair®)
 - Humanized monoclonal antibody with anti-IgE function
 - It binds selectively to free IgE (Fc region)
 - Prevents mast cell activation (release of inflammatory mediators)
Biosimilars

What is a biosimilar?

Unlike typical drugs that are made from synthetic chemicals, biologics are produced from living organisms.

Increasing Complexity

Biosimilars are biological products that have been proven to be as safe as originator biologic drugs.

- Are designed from scratch to match a reference original biological.
- Bear in essence the same:
 - Active substance
 - Comes in the same pharmaceutical form
 - Administered via the same route and dose
 - Indications

Comparability exercise

- Quality
- Preclinical
- Clinical studies

Biosimilars deliver comparable efficacy, safety and quality results as originator biologics
“The mast cell EP$_2$ activation in combination with the IgE neutralization by a biosimilar candidate of omalizumab, exerts a synergic potentiating anti-asthmatic effect”
Thesis objective

In order to verify the hypothesis the main objective is:

Develop an Omalizumab biosimilar candidate and study its effect beside an EP$_2$ agonist in a *in vivo* and *in vitro* model

<table>
<thead>
<tr>
<th>Sub-objective 1</th>
<th>Sub-objective 2</th>
<th>Sub-objective 3</th>
</tr>
</thead>
</table>
| • Asses in *in vivo* models
 • EP$_2$ activity
 • anti-IgE function | • Design and execute a *predictive quality program* to assess potential molecules to be biosimilar candidates at early stages. | • Assess the *synergic effect* of an EP$_2$ agonist and an anti-hIgE biosimilar candidate.
 • *In vitro* model
 • *In vivo* model |
Results
Study 1 (Objective 1)
Assess the activity of EP_2 and anti-IgE

A) Validate the protector effect of EP_2 in a transgenic model with this receptor overexpressed

B) Assess the anti-IgE activity in a transgenic model expressing hFcεRI
Study 1 (Objective 1)

Assessment of MC EP₂ receptor role

A. \(R_L \) – Lung resistance

B. mMCP1 - Mast cell activity

Fig. 1. A) Airway hyperresponsiveness to methacholine was assessed in BALB/c mice (wildtype and transgenic with EP₂ overexpressed) by measuring lung resistance \((R_L) \) in HDM-sensitized mice. B) Determination of the local lung production of the specific mast cell protein, mMCP-1, in sensitized and non-sensitized, transgenic and wildtype mice by an ELISA assay (*p-value<0.05, **p-value<0.01, ***p-value<0.001 and ****p-value<0.0001). HDM (House Dust Mice), SF (Physiological Serum), TG (Transgenic mice), WT (Wildtype mice), mMCP-1 (mouse mast cell protease 1), PBS (Phosphate Buffered Saline).
Study 1 (Objective 1)

Assessment of MC EP$_2$ receptor role

A. Differential inflammatory cell count

- **Fig. 2.** A) Differential inflammatory cell count per mL determined from counting at least 300 cells. B) Airway MC activity assessed in mice by measuring the local production of mMCP1. (*p-value<0.05, **p-value<0.01, ***p-value<0.001 and ****p-value<0.0001). HDM (House Dust Mice), SF (Physiological Serum), TG (Transgenic mice), WT (Wildtype mice), mMCP-1 (mouse mast cell protease 1), PBS (Phosphate Buffered Saline).
Study 1 (Objective 1)

Assessment of the anti-IgE activity (PRA protocol)

A. \(R_L \) – Lung resistance

\[\begin{array}{c|c|c}
\text{Grupamento} & \text{Grupamento} & \text{P valor} \\
\hline
\text{IgE+/NP- / OMA -} & \text{IgE+/NP+ / OMA -} & ** \\
\text{IgE+/NP- / OMA -} & \text{IgE+/NP+/ OMA+ (90µg)} & *** \\
\text{IgE+/NP- / OMA -} & \text{IgE+/NP+/ OMA+ (30µg)} & 0.1 \\
\text{IgE+/NP-/ OMA -} & \text{IgE+/NP+/ OMA+ (90µg)} & \text{ns} \\
\text{IgE+/NP+/ OMA -} & \text{IgE+/NP+/ OMA+ (30µg)} & *** \\
\text{IgE+/NP+/ OMA+ (90µg)} & \text{IgE+/NP+/ OMA+ (30µg)} & ** \\
\end{array} \]

Fig. 3. A) Airway response, bronchospasm, to nebulized NP-BSA through the lung in FcεRI transgenic mice sensitized with NP-BSA and treated with omalizumab following a protocol of passive respiratory anaphylaxis (PRA). **B)** Airway MC activity assessed by measuring the local production of mMCP1. (*p-value<0.05, **p-value<0.01, ***p-value<0.001 and ****p-value<0.0001). IgE (human immunoglobulin E), NP (Nitrophenyl), OMA (omalizumab), mMCP-1 (mouse mast cell protease 1).
Study 1 (Objective 1)

Discussion

• The protective effect of EP$_2$ has been validated
 – Having a high number of EP$_2$ allows a lower airway response in HDM-sensitized mice due to a decrease in MC activity.
 – Blockade the activity of EP$_2$ receptor worsens asthmatic parameter

• PRA model is useful to study the anti-IgE function in transgenic hFcεRI mice.
 – This protocol can be use to compare the omalizumab *in vivo* activity versus a biosimilar candidate.
Study 2 (Objective 2)

Predictive Quality Study for a BC with omalizumab

Predictive Quality Study

Physicochemical Characterization
- Composition and physical properties
- Primary structure assess
- PTMs
 - Glycosylation

Biological Characterization
- Biologic activity
- Immunochemical properties
Study 2 (Objective 2)

Physicochemical characterization

- **IDENTITY** (Composition and physical properties)
 - **Primary structure assessment** (Aminoacid composition)
 - **Molecular size & Purity**
 - CE-SDS (Capillar Electrophoresis)

 - **Isoform pattern** (Charge heterogeneity)
 - IEF (Isoelectric Focusing)

- **Glycosylation**

<table>
<thead>
<tr>
<th></th>
<th>Xolair</th>
<th>Biosimilar Candidate</th>
</tr>
</thead>
<tbody>
<tr>
<td>pI</td>
<td>7.8</td>
<td>7.6</td>
</tr>
<tr>
<td>7.7(^1)</td>
<td>7.5(^1)</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>7.4</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Species more predominant

Fig. 4. CE-SDS electropherograms of (A) Non-reduced and (B) Reduced antibodies.

Fig. 5. IEF gel image of Xolair and the biosimilar candidate.
Study 2 (Objective 2)

Biological characterization

- **Biological activity**
 - *In vitro*
 - *In vivo*

- **Immunological activity**
 - Target affinity
 » **SPR**
 (Surface Plasmon Resonance)

Omalizumab

IgE
Study 2 (Objective 2)

Biological activity

In vitro

β-hexosaminidase release assay

In vivo

PCA (Passive Cutaneous Anaphylaxis)

Fig. 6. Comparison between Xolair® and biosimilar candidate activity. (A) **β-hexosaminidase release assay.** (B) Passive Cutaneous Anaphylaxis dosing 2mg of anti-IgE antibody for 300ng of chimeric hlgE. (*p-value*<0.05, **p-value*<0.01, ***p-value*<0.001 and ****p-value*<0.0001).
Study 2 (Objective 2)

Immunological activity

- **Target affinity**
 - **SPR** (Surface Plasmon Resonance)

<table>
<thead>
<tr>
<th>Ligand</th>
<th>K_a (1/Ms)</th>
<th>K_d (1/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xolair®</td>
<td>2.12×10^6</td>
<td>0.0024</td>
</tr>
<tr>
<td>Biosimilar Candidate</td>
<td>1.28×10^6</td>
<td>0.0044</td>
</tr>
</tbody>
</table>

Fig. 7. Kinetic Analysis of (A) Xolair® and (B) biosimilar candidate using BiaEval 1.1. Coloured lines correspond to observed results at different analyte concentration and black lines correspond to theoretical adjustment.
Study 2 (Objective 2)

Discussion

• The **Biosimilar Candidate:**

 – Have **physicochemical differences** compared with the reference product
 • Due to the post-traductional modifications (PTMs)
 – Glycosylation
 – Recognize the desired antigen (**hIgE**)
 • With a **lower affinity** than the reference product
 • Has **biological activity** in **in vitro** and **in vivo** models
 – More studies are needed to be done.
Study 3 (Objective 3)

Evaluation of the synergic activity *in vivo* and *in vitro*

— *In vivo*
 - PRA model

— *In vitro*
 - β-hexosaminidase release test
Thanks for your attention!